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A method is described of calculating the nonlinearity of boundary
conditions of the third kind in solving problems of unsteady heat con-
duction on electrical models with RC networks,

At present, many technical problems of unsteady
heat conduction are solved by methods of analog sim-~
ulation on R and RC networks [1—-3]. In both cases a
finite difference approximation on the left side of the
unsteady heat conduction equation is carried out (sec-
ond spatial derivatives), while the first derivatives
with respect to time are solved in various ways which,
in the final analysis, affects the means of obtaining a
solution, In the one case the solution is obtained con-
tinuously on RC networks, and in the second case, on
R networks, as a result of successive calculation,

In computational practice RC networks are more
widely used, due to there being less difficulty in ob-
taining a solution. The usual means of performing the
calculations is by commercially available network
models of special analog computers and integrators
of original design, e.g., the SEI-01 of the TsKTI
(Central Boiler-Turbine Institute) [3].

In solving the main class of heat conduction prob-
lems, e.g., in determining the temperatures of the
components of steam and gas turbines, boundary con-
ditions of the third kind are usually employed, i.e.,
the temperatures Ty, of the medium washing the body
and the heat transfer coefficients, @, are assigned,
since these quantities more suitably reflect conditions
of convective heat transfer. The boundary conditions

of the third kind vary with time, i.e., o =f(t) and T¢ =

=fi(t). It is known, also, that an unsteady heat con-

duction problem is nonlinear, since the physical con-
stants appearing in the equations describing the phe-
nomenon are functions of temperature:
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Unfortunately, in modeling with RC networks, the
nature and arrangement of the equipment does not
allow variation of the physical constants and of one
of the constituent boundary conditions of o with time,
In practice, in the solution of many technical prob-
lems, A, ¢, and vy are assumed to be constant. How-
ever, in determining the temperature fields of tur-
bine components using heat transfer coefficients con-

stant with time, considerable error may arise in cer-
tain cases.

Work performed by the authors on the electrical
integrator of the analog simulation laboratory of Kiev
State University has permitted the development of a
method of successive approximations for allowing for
variation of the heat transfer coefficients in solving
unsteady heat conduction problems on RC networks.

The essence of the method is that, in solving un-
steady heat conduction problems with boundary con~
ditions of the third kind varying with time, one com-
ponent (@) remains constant, while the second (Ty,)
is variable, the law Ty, =f(t) being corrected from
the condition of conservation with time of the true
heat fluxes at the boundaries of the body. We divide
the time interval, in which the unsteady process being
examined takes place, into several intervals, For the
i~th interval we write down the values of the heat
fluxes at the boundaries of the body. In solving prob-
lems with constant initial values oy and variable val-
ues of heat transfer coefficients oy,

g = ao(m, —Ty,) F, (3
4=, F (Fy — T). @)

All the quantities appearing in (3) are known. In
(4) the wall temperature is unknown, but an approxi-
mate value of qj may be written, using the wall tem-
perature T“i’ obtained in a calculation with ¢y = const.
Having an approximate value of gj, we can correct
the value of the heat flux in solving with oy = const in
the i~th time interval, using in the calculation the
fictitious temperature of the medium T}n, determined
from the equality

g =0, F (I, — To,) = (IOF(7I?II],-— Ty,), (5)

Ty = (T, — To,) + T, (6)
o

We need to make the same conversion for all the re-
maining time intervals. By assigning in the solution

a new temperature curve converted in this way, we
obtain, for points lying on the surface, a new depen-
dence of variation of temperatures T, =f(t), corre-
sponding to the second approximation effected. By
substituting T; into (6) in place of Ty;, we obtain a
converted medium temperature for the third approxi-
mation, and so on. The above process of approxima-
tion is convergent, as indicated by repetition of values
of converted medium temperatures for two successive
approximations.
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Original Data of Problems of Cooling and Heating of an Infinite

Cylinder

Quantity Dimensions Heating Cooling
Diameter of in-
finite cylinder m 0.35 0.35

A W/m .degree 31.8 31.8

a=Xecy m? /sec 2.1.10-2 2.1-10-2
Duration of the i
process sec 960 900
Range of variation of o | W/ m® - degree 106-530 530106
Law of variation of o - o;=106--0.472 2;=530—0.472

The method described for successive approxima-
tions for solution of problems on RC networks, with
allowance for variation of heat transfer coeffieients,
is applied as follows:

1. The usual preliminary calculation of the un-
steady process with a4 = const is performed.

2. Temperatures at all points on the boundaries of
the region are measured.

3. A conversion according to (6) of the tempera-
ture curves is carried out for all the boundary points.

4. New temperature curves T;n =f(t) are assigned
in calculating the next approximation, instead of Ty, =
= f(t).

5. Temperatures in the second approximation at
all the surface points are measured. Conversion of
the temperature curves of the medium is performed,
based on the values obtained, and so on.

In principle the solution may be carried through
with any constant boundary resistances, but in this
case we must put values of o corresponding to the
assumed boundary resistances into (8) in place of the
values o4. It should be noted that, to obtain an accu-
rate solution by the method of successive approxima-
tions, we must have the functional transform for as-
signment of T} =7(t) at each boundary point of the
model. _

The method of successive approximations has been
used to solve problems in the cooling and heating of
an infinite cylinder. For comparison, we also solved
the problems by the Liebmann method, i.e., by di-
rect calculation of the variation of the heat transfer
coefficients. The original data on these problems are
shown in the table.

Figure 1 shows graphically the results of compar-
ison of the above-mentioned calculations, results
being given for all the approximations effected. The
first approximation for the calculations of heating
and cooling corresponds to solutions which have been
obtained up till now, in using constant heat trdnsfer
coefficients, appropriate to steady conditions. The
largest discrepancy in the first approximation with
regard to results of calculation of similar problems
by the Liebmann method constituted 9. 2% in heating,
and 30% in cooling. The values of the discrepancies
were determined with respect to the maximum tem-
perature in the cylinder in the steady regime. In
solving the cooling problem in the second approxi-
mation, the maximum divergence was 14.5%, in the
third, 5.85, in the fourth, 2, and in the fifth, <1%.

The discrepancy obtained in the fifth approximation,
expressed in degrees, did not exceed 1-2°, which
practically falls in the range of accuracy of solution
of an unsteady heat conduction problem by the Lieb-
mann method. In calculating heating, the maximum
deviation in the second approximation was 1.7%,
while in the third approximation the calculated tem-
peratures agreed to an accuracy corresponding to that
of solution by the Liebmann method. The slower con-
vergence in cooling is due to the fact that in this case
the discrepancies obtained in the first approximation
are considerably greater than the discrepancies in
the heating calculations. We may accelerate conver-
gence of the solution in cooling by use of tthe mean

1
integral heat transfer coefficients o= s fa( tydt in

the calculation, the initial conditions, ile. , the steady
temperature field, being calculated preliminarily with
oy corresponding to the condition mentioned. In this
case even the third approximation, as in heating, gives
results differing from those being compared by not
more than 1-2°.

Using the ideas which underlie the method of suc-
cessive approximations described, we may some-
what facilitate solution of problems of unsteady heat
conduction by the Liebmann method, for regions with
a developed system of boundary conditions of the third
kind. The Liebmann method allows us to take account
of variation with time of the physical constants of the
material and of the heat transfer coefficients. How-
ever, in solving technical problems with allowance
for only variation of o, for complex regions, appre-
ciable difficulties arise in connection with the need
to vary a large number of boundary resistances in
each time interval, which takes up a good deal of time,
and may be the cause of accidental errors. The con-
version formula for determining the boundary tem-
perature will have, in this case, for the i-th interval
of solution, the following form:

Trlnl2 S (Tmi—‘ Trn )_Ti—l' (7)
@ .

0 -1

Expression (7) is not exact, since in it we use the
temperature of a boundary point corresponding to i —
-~ 1, i,e., to the preceding time inferval, In practice
the solution is accomplished in the following order:

1) A model of the region under examination is cho-
sen and initial conditions are assigned.
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2) The system of boundary conditions (Ty, and the
boundary resistances) is drawn up, the values of the
boundary resistances being calculated according to
the corresponding « values of the initial conditions,
while the temperature of the medium is calculated
according to (7).

3) Measurements are made.

4) Preparation of solution of the next step reduces
to conversion and assignment of new values of the
medium temperature Th,.

The approximation method, which allows usin solv~
ing an unsteady problem by the Liebmann method
to take into account variation of the heat transfer co-
efficients without variation of the boundary resistances
which simulate the convective heat transfer, was em-
ployed and gave good results in solving methodological
problems in the cooling of an infinite cylinder, whose
conditions have already been described above. The
largest deviation from the results of calculation by
the Liebmann method with « = var do not exceed 3.5%
of the maximum temperature level in the cylinder.

The method of successive approximations for so-
lution of unsteady heat conduction problems on RC
networks has been used to solve more complex prob-
lems. The unsteady temperature fields were obtained for
the rotor of a natural gas turbine in a check condition,
the boundary and initial conditions being calculated
according to data from one of the tests carried out on
this machine. The results of the calculation were ver-
ified from the readings of 69 thermocouples in the
calculation time intervals. Figure 2 shows the vari-
ation of temperature according to the test results, for
typical points on the rotor (A1,A10, 14), as well as
giving the results according to each calculation ap-
proximation performed. As early as the third approxi-~
mation, the maximum deviation between the test and
the calculated temperatures did not exceed 1.5% of
the maximum temperature level in the rotor.
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The investigation performed indicates that the
method of successive approximations described may
be recommended for application on existing equip-
ment with RC networks, for calculating the variation
of heat transfer coefficients, in solution of unsteady
heat conduction problems.

In solving problems by the Liebmann method on
complex models with developed boundary conditions
of the third kind, an approximation method of calcula-
ting the variation of heat transfer coefficients may be
useful, since the difficulty of solution then decreases,
and the possibility of errors in reassignment of bound-
ary resistances is excluded.

NOTATION

oy and oj are the heat transfer coefficients corre-
sponding to the initial conditions and the i-th time in-
terval; Tpj is the temperature of medium for i-th
time interval; Ty; is the temperature of surface for
i~th time interval obtained with o = @y = const; Tj is
the temperature of surface for i-th time interval ob-
tained with o = var; Tj- is the temperature at one of
points lying on the boundary of the object.
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